AI Canvas
AI Canvas 바로가기
  • 시작하기
    • 서비스 소개
    • 주요 용어 설명
    • 계정 및 언어 설정
  • 캔버스 기본 사용법
    • 캔버스 탭 관리
    • 캔버스 화면 관리
    • 캔버스 공유 및 권한 설정
    • 노드 조작 및 관리
    • 엣지 조작 및 관리
    • 스케줄 설정
    • 노드별 크레딧 소모량
  • 노드 종류
    • 데이터
      • URL 리더
      • 데이터
      • PDF 데이터
      • 데이터 분할
      • 데이터 저장소
      • 명령 프롬프트
      • 예제 데이터
      • 이미지 데이터
      • 텍스트 입력
      • 텍스트-데이터 변환
    • API
      • 기업공시
      • 깃허브 커밋
      • 대화형 아바타
      • 크롤링
      • 프롬프트
    • 전처리
      • 결측치 채우기
      • 그룹화
      • 데이터 병합
      • 데이터 비닝
      • 데이터 수정
      • 데이터 어노테이션
      • 데이터 연결
      • 스케일링
      • 슬라이싱
      • 열 선택
      • 열 타입 변경
      • 이미지 임베딩
      • 이상치 제거
      • 중복 제거
      • 차원 축소
      • 텍스트 임베딩
      • 텍스트 전처리
      • 특성 생성
      • 파이썬 스크립트
      • 표본 재추출
      • 픽셀 변환
      • 행 결합
      • 행 선택
    • 모델
      • YOLO 모델
      • 결정 트리
      • 그래디언트 부스팅
      • 랜덤 포레스트
      • 로지스틱 회귀
      • 모델 학습
      • 서포트 벡터 머신
      • 선형 회귀
      • 시계열 모델 학습
      • 신경망
      • 얼굴 인식
      • 에이다 부스트
      • 일괄 예측
      • 추천 SVD++
      • 추천 모델 학습
      • 추천 베이스라인
      • 프로펫
    • 평가
      • ROC 커브
      • 메트릭
      • 모델 평가
      • 에러 히스토그램
      • 정답 비율
      • 정확도
      • 특성 중요도
      • 특성 중요도 비교
      • 혼동 행렬
    • 알림
      • 이메일 전송
    • 시각화
      • 막대 그래프
      • 수평 막대 그래프
      • 선도표
      • 바이올린 플롯
      • 박스 플롯
      • 산점도 그래프
      • 히트맵
      • 원 그래프
      • 게이지 차트
      • 버블 차트
      • 결측치 비율
      • 데이터 개수
      • 예측값 비교
      • 평균 비교
      • PR 트랜드
      • 특성 통계
      • 평균 예측값
      • 워드클라우드
    • UI
      • 데이터 정보
      • 데이터 테이블
      • 리스트
      • 버튼
      • 샌드박스
      • 아이콘
      • 예측하기
      • 이미지 뷰어
      • 챗 UI
      • 텍스트 출력
      • 텍스트 편집기
      • 페이지
      • 필터
      • 행
      • PDF 뷰어
      • CM
    • 애플리케이션
      • 애플리케이션
    • 배포
      • 배포
  • 워크스페이스 관리
    • 워크스페이스 보기
    • 워크스페이스 생성 및 설정
    • 워크스페이스 공유 및 권한 설정
  • 애플리케이션 페이지
    • 로그인 및 로그아웃
    • 설정 및 캔버스
    • 권한 및 멤버 관리
  • 캔버스 실습 가이드
    • 1. AI 모델 구축
      • 데이터셋 준비
        • 데이터셋 업로드
      • 탐색적 데이터 분석
        • 데이터 살펴보기
        • 결측치 확인하기
      • 데이터 전처리
        • 결측치 채우기
        • 열 선택
      • AI 모델 구축
        • 데이터 분할
        • 학습 알고리즘 선택
        • 모델 학습
        • 모델 사용해보기
      • 데이터 검증
        • 검증 진행
      • 모델 평가
        • 모델 평가
        • 특성 중요도 살펴보기
      • 결과 화면
    • 2. 데이터 시각화
      • 막대 그래프
      • 박스 플롯
      • 산점도 그래프
      • 원 그래프
      • 데이터 개수
      • 에러 히스토그램
      • 예측값 비교
      • 결과 화면
    • 3. 대시보드 UI 제작 및 애플리케이션 구축/배포
      • 페이지 구성하기
      • 애플리케이션 구축
      • 애플리케이션 배포
      • 결과 화면
    • 4. 프레임을 활용한 프레젠테이션 및 캔버스 공유
      • 프레임을 활용한 프레젠테이션
      • 캔버스 공유하기
    • 가이드 전체 영상
  • 인공지능 교육 영상
    • 회귀 모델의 평가지표
    • 분류 모델의 평가지표
Powered by GitBook
On this page
  1. 캔버스 실습 가이드
  2. 3. 대시보드 UI 제작 및 애플리케이션 구축/배포

페이지 구성하기

Previous3. 대시보드 UI 제작 및 애플리케이션 구축/배포Next애플리케이션 구축

Last updated 1 year ago

이제 데이터를 시각화해봤으니, 위젯들을 활용하여 어플리케이션에서 보여질 대시보드를 구성해보겠습니다.

먼저, 왼쪽 바의 'UI'파트에서 '페이지' 위젯을 캔버스에 추가합니다.

위젯들(애플리케이션 등 일부 위젯 제외)을 페이지 안에 드래그 앤 드롭하면 위젯들이 페이지에 추가됩니다. 페이지와 위젯들의 사이즈를 조절하며, 앞서 만든 시각화 위젯들을 페이지 안에 원하는대로 자유롭게 배치합니다.

페이지를 삭제하게 되면 페이지에 추가되었던 모든 위젯도 함께 삭제됩니다. 따라서 페이지를 삭제할 때, 안에 있는 위젯도 함께 삭제하고 싶지 않다면, 페이지 안의 위젯에 우클릭한 후 '분리'를 클릭하여 위젯을 페이지로부터 분리해놓아야합니다. 또한, 페이지 내부에서 위젯끼리 겹치게 되면, 뒷 레이어에 있는 위젯들이 앞 레이어의 위젯에 가려 보이지도 않고 컨트롤할 수도 없게 되는 상황이 있습니다. 이 경우 위젯에 우클릭한 후, '정렬'에서 '(맨)앞으로','(맨)뒤로'를 클릭하여 새롭게 정렬시킴으로써 밑 레이어에 있는 위젯들을 컨트롤할 수 있습니다.

앞서 다뤄봤던 '예측하기', '모델 평가', '특성 중요도' 위젯(’예측하기’ input - ‘모델 학습’, ‘모델 평가’ input - ‘일괄 예측’, ‘특성 중요도’ input - ‘모델 학습’, ‘일괄 예측’)도 캔버스에 추가한 후 페이지에 넣어보겠습니다.

현재까지 이렇게 세 페이지를 구성해보았습니다.